BLOCK CODES FOR BERNOULLI SHIFTS

BY M. SMORODINSKY

ABSTRACT

A general method of constructing block codes between Bernoulli shifts is introduced. This method generalizes an example of Boyle and Tuncel.

1. Introduction

Let A and B be finite sets. Consider the spaces $X = A^z$ and $Y = B^z$. Let S be the left shift on X and T the left shift on Y. A k-block code is a map

$$\phi: A^k \to B$$
.

It gives rise to an equivariant continuous map from X to Y, namely

$$(\phi x)_i = \phi(x_i, \dots, x_{i+k-1}), \quad \text{where } x = \{x_i\} i \in z.$$

It is known that every equivariant continuous map is a block map composed with a power of the shift S.

If p is a probability measure on A, that is p is a probability vector, and if $\mu = p^z$ is the product measure on A^z , then S acting on the measure space is a Bernoulli shift (B.S.) denoted by B(p). Let q be a probability vector for B. B(q) is a continuous factor of B(p) if there exists a k-block code ϕ such that p^z is carried onto q^z by the homomorphism ϕ . We shall say that B(q) is a trivial factor of B(p) if there is a map,

$$f: A \to B$$
 such that $q(b) = \sum_{f(a)=b} p(a)$, $\forall b \in B$,

i.e., the vector q is a clustering of p. Obviously in such a case there exists a 1-block map from B(p) onto B(q).

This paper is a contribution to the study of continuous Bernoulli factors which was initiated in [3].

Received May 3, 1984

If B(q) is continuous factor of B(p) it is evident that $|A| \ge |B|$ since topological entropy decreases under taking factors. Suppose |A| = |B|. Considering metrical entropy we know that $h(p) \ge h(q)$. The case h(p) = h(q) was settled in [3] and it was there proved that q is a rearrangement of p, and therefore there are no non-trivial factors in such a case. The case |A| = |B| and h(p) > h(q) is impossible since by [2] a continuous equivariant map which preserves the topological entropy is finite to one. But a finite to one map preserves the metrical entropy.

In [3] it was proved that any continuous factor of the n-shift B(1/n, ..., 1/n) is trivial. It was conjectured in [3] that there are no non-trivial continuous factors. However, in [1] an example was constructed of a non-trivial continuous factor (see §3).

In this paper a method of constructing factors for B.S.s is presented. This "tree method" gives us examples of a 2-state B.S. as a continuous factor of a 4-state B.S., also a 3-state B.S. as a factor of a 4-state B.S. We also indicate how to get k-block maps between B.S.s which do not admit k-1-block maps.

2. The tree method

A k-tree T is a set of k-tuples (i_1, \ldots, i_k) of natural numbers (called branches) subject to the following restrictions. There is a natural number $n(\emptyset)$ and $1 \le i_1 \le n(\emptyset)$ and for each (i_1, \ldots, i_j) , $1 \le j < k$ which is an initial segment of a branch there exists a natural number $n(i_1, \ldots, i_j)$ and $1 \le i_{i+1} \le n$ (i_1, \ldots, i_j) . Observe that for each $1 \le j < k$ there is a j-tree associated with T, namely the j-tuples (i_1, \ldots, i_j) which are the initial segments of branches of T. This tree be denoted by T(j).

A probability tree is a tree together with a set of probability vectors $\{p(i_1, \ldots, i_j)\}, 0 \le j < k$ such that the number of components of $p(i_1, \ldots, i_j)$ is equal to $n(i_1, \ldots, i_1)$. Given a probability tree T we associate with it the probability vector of T, p(T), in the following way. p(T) is labelled by the branches of T and

$$p(i_1,\ldots,i_k)(T) = \prod_{j=0}^{k-1} P_{i_{j+1}}(i_1,\ldots,i_j).$$

Given two probability vectors p defined on A, and q defined on B, we say that q is a *clustering* of p, denoted q < p, if there exists a map $f: A \to B$ such that

$$q_b = \sum_{f(a)=b} p_a, \quad \forall b \in B.$$

The product of p and q, denoted by $p \cdot q$, is the probability vector on $A \times B$, $\{p_a \cdot p_b\}$. We are now ready to state the main result of this paper.

THEOREM. Let T be a probability k-tree and p = p(T). Let q be another probability vector such that for all $(\alpha_0, \ldots, \alpha_{k-1}) \in \prod_{j=0}^{k-1} T(j)$ (where Π is the cartesian product)

$$(*) q < \prod_{j=0}^{k+1} p(\alpha_j).$$

Then, there exists a k-block map from B(p) onto B(q).

PROOF. Let us take the state space A to be the branches of T. By condition (*) there are maps

$$f_{(\alpha_0,\ldots,\alpha_{k-1})}:\prod_{i=1}^{k-1}T(i)\to B, \qquad \alpha_i\in T(i).$$

(Notice that here $\{\alpha_j\}$ are not necessarily sub-branches of the same branch in T.) We define the k-block map ϕ as follows:

Let $x_n = (i_1, \dots, i_k)$; define the random variables

$$Z_n^{(j)} = (i_1, \dots, i_j), \quad 1 \le j \le k \quad \text{and} \quad Z_n^{(0)} = \emptyset.$$

Put

$$\phi(x_1,\ldots,x_k)=f_{(Z_k^{(0)},\ldots,Z_1^{(k-1)})}(Z_k^{(1)},\ldots,Z_1^{(k)}).$$

We shall prove by induction on n the following two claims:

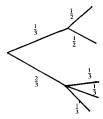
- (1) y_1, \ldots, y_n are independent
- (2) (y_1, \ldots, y_n) is independent of $(Z_1^{(k-1)}, \ldots, Z_{k-1}^{(1)})$.

For n = 1, (2) follows from the clustering assumption (*). Assume that (1) and (2) hold for some $n \ge 1$. Consider y_1, \ldots, y_{n+1} . By stationarity y_2, \ldots, y_{n+1} are independent and (y_2, \ldots, y_{n+1}) is independent of $(Z_2^{k-1}, \ldots, Z_k^{(1)})$. Since $(Z_2^{(k-1)}, \ldots, Z_k^{(1)}, y_2, \ldots, y_{n+1})$ is independent of $(x_1, Z_1^{(k-1)})$ it follows that (y_2, \ldots, y_{n+1}) is independent of $(X_1, Z_1^{(k-1)}, Z_2^{(k-1)}, \ldots, Z_k^{(1)})$. But Y_1 is $(X_1Z_1^{(k-1)}, Z_2^{(k-1)}, \ldots, Z_k^{(1)})$ -measurable and therefore Y_1, \ldots, Y_{n+1} are independent. So claim (1) holds for n+1. Also $(Z_1^{(k-1)}, \ldots, Z_{k-1}^{(1)}, Y_1)$ is $(X_1Z_2^{(k+1)}, \ldots, Z_k^{(1)})$ -measurable and therefore independent of (Y_2, \ldots, Y_{n+1}) . Now, Y_1 is independent of $(Z_1^{(k-1)}, Z_2^{(k-1)}, \ldots, Z_{k-1}^{(1)})$ (Claim (2) for $(x_1, x_2, \ldots, x_{n+1})$ is independent of $(X_1, x_2, \ldots, X_{k-1})$) and the proof of the theorem is completed.

3. Examples

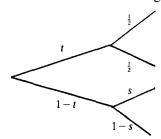
We begin by some 2-block codes which produce non-trivial factors.

(1) The Boyle-Tuncel example ([1]). Let $p = (\frac{1}{6}, \frac{1}{6}, \frac{2}{9}, \frac{2}{9}, \frac{2}{9})$ and $q = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$. Represent p by the following tree:



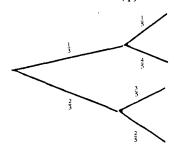
Since $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) < (\frac{1}{2}, \frac{1}{2}) \cdot (\frac{1}{2}, \frac{2}{3})$ and trivially $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) < (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) \cdot (\frac{1}{2}, \frac{1}{2})$, there exists a 2-block map from B(p) onto B(q).

(2) 2-state B.S. as a factor of a family of 4-state B.S.s. Let $\frac{1}{2} < t < 1$ and s = 1/2t. Consider the following tree:



Since $(\frac{1}{2},\frac{1}{2}) \le (s,1-s) \cdot (t,1-t)$ there is a 2-block from $B(\frac{1}{2}t,\frac{1}{2}t,(1-t)s,(1-t))$ (1-s)) onto $B(\frac{1}{2},\frac{1}{2})$ for each $\frac{1}{2} < t < 1$. If we put $t = \frac{2}{3}$ we get $B(\frac{1}{2},\frac{1}{2})$ as a non-trivial factor of $B(\frac{1}{3},\frac{1}{3},\frac{1}{4},\frac{1}{12})$. Actually, the same code will produce $B(\frac{1}{2},\frac{1}{2})$ as a non-trivial factor of all the B(p) obtained from the above tree.

(3) As an example of achieving minimal difference between the number of states of B(p) and its non-trivial factor B(q) consider the tree:

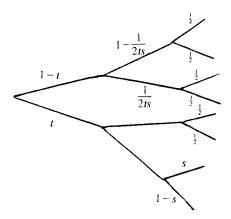


Since $(\frac{8}{15}, \frac{4}{15}, \frac{1}{5}) < (\frac{1}{5}, \frac{4}{5}) \cdot (\frac{1}{3}, \frac{2}{3}); (\frac{2}{5}, \frac{3}{5}) \cdot (\frac{1}{3}, \frac{2}{3})$ there is a 2-block map from $B(\frac{2}{5}, \frac{4}{15}, \frac{4}{15}, \frac{1}{15})$ onto $B(\frac{8}{15}, \frac{4}{15}, \frac{1}{5})$.

This code can also produce uncountable pairs of B.S.s where one is the non-trivial factor of the other.

Now we consider some higher block maps.

(4) Let $\frac{1}{2} < t < s < 1$. Consider the following tree:



It is not hard to check that $q = (\frac{1}{2}, \frac{1}{2})$ meets the conditions of the theorem for such a tree. If p = p(T) for that tree T there is a 3-block map from B(p) onto $B(\frac{1}{2}, \frac{1}{2})$.

Observe that in the probability vector p^2 which is a function of (s, t) there is no subset of components the sum of which identically (in (s, t)) equals $\frac{1}{2}$. Therefore there can be at most a finite number of values (s, t) such that there will be a 2-block map from B(p) onto $B(\frac{1}{2}, \frac{1}{2})$.

(5) We now generalize example (4) in the following way.

Let $\frac{1}{2} < S_0 < S_2 \cdots < S_{k-1} = 1$ be given. Let T be the following k-tree: $T = (i, \dots, i_k)$, $i_j \in \{1, 2\}$. Let $i \le j \le k - 1$,

$$p(2, 2, ..., 2) = \left(\frac{s_{j-1}}{s_j}, 1 - \frac{s_{j-1}}{s_j}\right)$$
 and $p(i, ..., i_j) = \left(\frac{1}{2s_j}, 1 - \frac{1}{2s_j}\right)$

if $(i, ..., i_j) = (2, 2, ..., 2)$ and $p(0) = (1/2s_0, 1 - 1/2s_0)$. Again $q = (\frac{1}{2}, \frac{1}{2})$ satisfies the conditions of the theorem for that tree and there is a k-block map from B(p(T)) onto $B(\frac{1}{2}, \frac{1}{2})$. $p^{k-1}(T)$ as a function of $(s_0, ..., s_{k-2})$ will not have a subset the sum of which will be identically $\frac{1}{2}$ and therefore there will be at most finite number of k-1 tuplets $(s_0, ..., s_{k-2})$ for which there will be a k-1-block code from P(T) onto $B(\frac{1}{2}, \frac{1}{2})$.

4. Some open problems

(1) Given B(q) a continuous factor of B(p), does there exist a probability tree T such that p = p(T) and q satisfies the conditions of the theorem?

A positive answer to problem (1) will give an effective way to find all the continuous factors of a given B(p).

- (2) Is there a non-trivial (2-state) B.S. factor of a 3-state B.S.?
- Again, if (1) admits a positive answer, then it is easy to see that there will be no non-trivial factors, because a 3-state B.S. will admit only 2-trees and q would have to be a clustering of p.
- (3) Is there a 2k ($k \ge 1$) B.S. which is a non-trivial continuous factor of a 2k + 1 state B.S.?

Using a method similar to example (3) one can construct a non-trivial 2k-1-state B.S. as continuous factors of a 2k-state B.S. for all $k \ge 2$.

REFERENCES

- 1. M. Boyle and S. Tuncel, *Infinite-to-one codes and Markov measures*, preprint, University of Washington 1983.
- 2. E. M. Coven and M. E. Paul, *Endomorphisms of irreducible subshifts of finite type*. Math. Syst. Theory **8** (1974), 167–175.
- 3. A. del Junco, M. Keane, B. Kitchens, B. Marcus and L. Swanson, Continuous homomorphisms of Bernoulli schemes. Progress in Math 10 (1981), 91-111.

DEPARTMENT OF MATHEMATICS
TEL AVIV UNIVERSITY
TEL AVIV 69978, ISRAEL